Exercise 14

Consider the point (x, y) lying on the graph of $y=\sqrt{x-3}$. Let L be the distance between the points (x, y) and $(4,0)$. Write L as a function of y.

Solution

The distance from (x, y) to $(4,0)$ is given by

$$
\begin{align*}
L & =\sqrt{(4-x)^{2}+(0-y)^{2}} \\
& =\sqrt{(4-x)^{2}+(-y)^{2}} \\
& =\sqrt{(4-x)^{2}+y^{2}} . \tag{1}
\end{align*}
$$

Solve the given equation for x.

$$
\begin{aligned}
& y=\sqrt{x-3} \\
& y^{2}=x-3 \\
& y^{2}+3=x
\end{aligned}
$$

Therefore, equation (1) becomes

$$
\begin{aligned}
L & =\sqrt{\left[4-\left(y^{2}+3\right)\right]^{2}+y^{2}} \\
& =\sqrt{\left(4-y^{2}-3\right)^{2}+y^{2}} \\
& =\sqrt{\left(1-y^{2}\right)^{2}+y^{2}} \\
& =\sqrt{\left(1-2 y^{2}+y^{4}\right)+y^{2}} \\
& =\sqrt{y^{4}-y^{2}+1} .
\end{aligned}
$$

